4 research outputs found

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    Forward and Inverse Kinematics Solution of A 3-DOF Articulated Robotic Manipulator Using Artificial Neural Network

    Get PDF
    In this research paper, the multilayer feedforward neural network (MLFFNN) is architected and described for solving the forward and inverse kinematics of the 3-DOF articulated robot. When designing the MLFFNN network for forward kinematics, the joints' variables are used as inputs to the network, and the positions and orientations of the robot end-effector are used as outputs. In the case of inverse kinematics, the MLFFNN network is designed using only the positions of the robot end-effector as the inputs, whereas the joints’ variables are the outputs. For both cases, the training of the proposed multilayer network is accomplished by Levenberg Marquardt (LM) method. A sinusoidal type of motion using variable frequencies is commanded to the three joints of the articulated manipulator, and then the data is collected for the training, testing, and validation processes. The experimental simulation results demonstrate that the proposed artificial neural network that is inspired by biological processes is trained very effectively, as indicated by the calculated mean squared error (MSE), which is approximately equal to zero. The resulted in smallest MSE in the case of the forward kinematics is 4.592×10^(-8) in the case of the inverse kinematics, is 9.071×10^(-7). This proves that the proposed MLFFNN artificial network is highly reliable and robust in minimizing error. The proposed method is applied to a 3-DOF manipulator and could be used in more complex types of robots like 6-DOF or 7-DOF robots
    corecore